СЕМЁНОВА ЮЛИЯ ФЕДОРОВНА

ОПТИМИЗАЦИЯ ОЦЕНКИ ГЛИКЕМИЧЕСКОГО КОНТРОЛЯ У БОЛЬНЫХ САХАРНЫМ ДИАБЕТОМ 1 ТИПА НА ОСНОВЕ АНАЛИЗА ВАРИАБЕЛЬНОСТИ УРОВНЯ ГЛЮКОЗЫ

3.1.19. Эндокринология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»

Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»

TT		
н	аучный	руководитель:
	ay middin	руководитель

доктор медицинских наук, профессор РАН

Климонтов Вадим Валерьевич

Научный консультант:

доктор технических наук

Бериков Владимир Борисович

Официальные оппоненты:

доктор медицинских наук, профессор кафедры эндокринологии и диабетологии Федерального государственного бюджетного образовательного учреждения высшего образования «Московский Медико-Стоматологический Государственный Университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации

Маркова Татьяна Николаевна

доктор медицинских наук, профессор, заведующий Самойлова Юлия Геннадьевна кафедрой педиатрии с курсом эндокринологии Федерального государственного бюджетного образовательного учреждения высшего образования «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Ведущая организация: Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр эндокринологии» Министерства здравоохранения Российской Федерации, г. Москва

2023 года в часов на заседании Защита диссертации состоится « » диссертационного совета на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук 24.1.239.02 на базе федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук» по адресу: 630089, г. Новосибирск, ул. Б. Богаткова, 175/1.

С диссертацией можно ознакомиться в библиотеке Научно-исследовательского института терапии и профилактической медицины – филиала Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук» по адресу: 630089, г. Новосибирск, ул. Б. Богаткова, 175/1 и на сайте https://iimed.ru

A 1		2022
Автореферат разослан «	//	2023 года
A D I O D C D C D A I D A S O C J A I I N	//	2023 I 0/1a

Ученый секретарь диссертационного совета доктор медицинских наук Мустафина Светлана Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Сахарный диабет (СД) является значимым неинфекционным заболеванием человека (Global Report on Diabetes, WHO, 2016). Согласно оценке экспертов Международной Федерации диабета, общее число больных СД в мире достигло 537 миллионов человек. Ожидается, что к 2030 году число больных СД увеличится до 643 миллионов (IDF Diabetes Atlas, 2021). Медицинская и социальная значимость СД определяется хроническими сосудистыми осложнениями (Дедов И.И. и соавт., 2021).

Достижение и сохранение оптимального гликемического контроля - необходимое условие для предотвращения развития острых и хронических осложнений СД, повышения качества и увеличение продолжительности жизни больных. В связи с этим, разработка методов всесторонней оценки качества гликемического контроля остается одним из приоритетов в диабетологии.

Вместе с тем, накапливается все больше данных о роли вариабельности уровня глюкозы (ВГ) как фактора риска осложнений СД (Климонтов В.В. и соавт., 2016; Jun J.E. и соавт., 2019; Monnier L. и соавт., 2021; Chen J. и соавт., 2022). Высокая ВГ – установленный фактор риска гипогликемии, в том числе в ночные часы (Klimontov V.V. и соавт., 2017; Zinman В. и соавт., 2018; DeVries J. и соавт., 2019). Учет ВГ необходим для правильного подбора сахароснижающей терапии (Umpierrez G.E. и соавт., 2018; Kovatchev В. и соавт., 2019). Наибольшую проблему ВГ представляет для больных СД 1 типа, получающих базис-болюсную инсулинотерапию (DeVries J. и соавт., 2019).

Это определяет актуальность совершенствования подходов к оценке качества гликемического контроля у больных СД 1 типа с учетом параметров $B\Gamma$.

разработанности темы Степень исследования. Непрерывный мониторинг глюкозы (НМГ) открыл принципиально новые возможности в оценке качества контроля гликемии у больных СД. Благодаря НМГ, появилась возможность получения большого объема данных о суточных колебаниях глюкозы, межсуточных трендах, эпизодах гипогликемии и гипергликемии (Reddy M. и соавт., 2018; Rodbard D. и соавт., 2023). В последние годы сформировались концепции времени в гликемических диапазонах и концепция изменившие методологию оценки ВГ, существенно качества гликемии у пациентов с СД. Обе концепции нашли отражение международном консенсусе по НМГ (Danne T. и соавт., 2017) и консенсусе по времени в диапазоне (Battelino T. и соавт., 2019), в российских и зарубежных клинических рекомендациях (Клинические рекомендации «СД 1 типа у взрослых» РАЭ, 2022; American Diabetes Association. Standards of Medical Care in Diabetes, 2023). Данные НМГ позволяют не только оценивать, но и прогнозировать уровень глюкозы у больных СД, при этом для высокоточного прогнозирования применяют технологии машинного обучения (MO) (Mujahid О. и соавт., 2021; Kodama S. и соавт., 2021).

Вместе с тем, многие проблемы остаются нерешенными. В частности, не установлено, какой именно аспект ВГ (дисперсия значений, амплитуда колебаний, скорость изменения уровня глюкозы, эпизоды гипергликемии и гипогликемии) имеет наиболее существенное значение для формирования осложнений СД. Соответственно, нет единого мнения о том, какие из многочисленных характеристик ВГ имеют наибольшее клиническое значение. Отсутствуют общепринятые референсные значения параметров ВГ у лиц с нормальной толерантностью к глюкозе. Требует уточнения значимость различных факторов, способствующих формированию феномена высокой ВГ на фоне лечения СД 1 типа. В числе актуальных задач - совершенствование аппарата И компьютерных технологий математического флуктуаций гликемии в различные периоды суток, разработка все более надежных алгоритмов высокоточного прогнозирования колебаний глюкозы с помощью алгоритмов МО. Решение указанных задач имеет большое значение для повышения эффективности и безопасности лечения СД 1 типа.

Цель исследования: оптимизировать подходы к оценке качества гликемического контроля у больных сахарным диабетом 1 типа на основе анализа вариабельности гликемии.

Задачи исследования:

- 1. Установить референсные значения суточных, дневных и ночных параметров вариабельности уровня глюкозы по данным непрерывного мониторинга у лиц с нормальной толерантностью к глюкозе.
- 2. Определить ассоциации параметров вариабельности уровня глюкозы с функцией бета-клеток, чувствительностью к инсулину и композитным составом тела у лиц с нормальной толерантностью к глюкозе.
- 3. Оценить суточные, дневные и ночные параметры времени в гликемических диапазонах и вариабельности уровня глюкозы у больных сахарным диабетом 1 типа в зависимости от длительности заболевания, остаточной функции бета-клеток, массы и композитного состава тела, наличия осложнений и характеристик инсулинотерапии.
- 4. Выявить факторы, ассоциированные с высокой вариабельностью уровня глюкозы в ночные и дневные часы у больных сахарным диабетом 1 типа.
- 5. Разработать подходы к прогнозированию эпизодов ночной гипогликемии у больных сахарным диабетом 1 типа на основе данных непрерывного мониторинга глюкозы и алгоритмов машинного обучения.

Научная новизна. Впервые определены референсные значения основных математических индексов ВГ и показателей времени в гликемических диапазонах в разные периоды суток (ночные и дневные часы) у лиц с нормальной толерантностью к глюкозе. Показано, что среди лиц с нормальной толерантностью к глюкозе лица с избыточной массой тела имеют более высокий среднесуточный уровень глюкозы, а также более высокие значения индексов, чувствительных к гипергликемии (HBGI, J-индекс, CONGA), по сравнению с лицами с нормальной массой тела. Выявлены положительные

корреляции общей массы жировой ткани (ЖТ), массы ЖТ на туловище и в центральной области живота со среднесуточным уровнем глюкозы и отрицательные – со временем в диапазоне гипогликемии (Time Below Range, TBR), индексом M-value. Установлена отрицательная корреляция между массой ЖТ и коэффициентом вариации (CV). Показаны ассоциации между параметрами НМГ, уровнем инсулина натощак и индексом НОМА-β.

Получены новые данные о вкладе клинических факторов (длительность остаточная функция бета-клеток, наличие ожирения, особенности инсулинотерапии) в формирование суточной динамики глюкозы у больных СД 1 типа. Показано, что меньшая (до 5 лет) длительность заболевания ассоциирована с лучшими показателями времени в целевом диапазоне, а наличие остаточной секреции инсулина (определяемого уровня С-пептида натощак и/или после еды) ассоциировано с более низкими значениями индексов, отражающих гипергликемию и ВГ. Больные СД 1 типа с избыточной массой тела имеют более высокие значения параметров НМГ, отражающих более низкие значения гипергликемию И параметров, гипогликемию. Пациенты на постоянной подкожной инфузии инсулина (ППИИ), по сравнению с больными, получающими лечение в режиме многократных инъекций инсулина (МИИ), имеют лучшие показатели времени в целевом диапазоне (Time in Range, TIR), а также индексов ВГ.

Впервые идентифицированы клинические факторы риска высокой дисперсии значений глюкозы, высокой амплитуды колебаний и скорости изменений уровня глюкозы у больных СД 1 типа. Показано, что высокая ВГ, оцененная по этим характеристикам, ассоциирована с нормальной или пониженной массой тела, отсутствием остаточной секреции инсулина, сохранной функцией почек, терапией в режиме МИИ, применением супрафизиологических доз инсулина, нецелевыми значениями гликированного гемоглобина (HbA1c).

Показано, что наличие микрососудистых осложнений (диабетической ретинопатии (ДР), нефропатии (ДН), кардиоваскулярной автономной нейропатии (КАН)) у больных СД 1 типа ассоциировано с более высокими значениями параметров НМГ, отражающих гипергликемию, в то время как нарушенное распознавание гипогликемии (НРГ) ассоциировано с высокими значениями ВГ и низкими значениями ТІК.

Разработан метод высокоточного прогнозирования ночной гипогликемии (НГ) у больных СД 1 типа в режиме реального времени на основе параметров НМГ, клинических данных и алгоритмов МО, включая «случайный лес» (Random Forest, RF), логистическую линейную регрессию с регуляризацией (Logistic Linear Regression with Lasso regularization, LogRLasso) и искусственную нейронную сеть (Artificial Neural Networks, ANN). Впервые исследована результативность включения в модели широкого набора клинических данных и параметров ВГ, рассчитанных на основе данных НМГ, а также применение методов сэмплинга (балансировки выборки), для повышения точности прогноза гипогликемии.

Теоретическая и практическая значимость работы. Теоретическая значимость работы состоит в выявлении факторов, оказывающих влияние на суточные флуктуации уровня глюкозы у здоровых лиц и у пациентов с СД 1 типа. Показано влияние функции бета-клеток, чувствительности к инсулину, особенностей композитного состава тела (КСТ) на суточную динамику гликемии у лиц с нормальной толерантностью к глюкозе. Описаны особенности суточной динамики уровня глюкозы в дневные и ночные часы у больных СД 1 типа в зависимости от длительности заболевания, остаточной функции бетаожирения, хронических осложнений наличия СД, инсулинотерапии. Уточнено клиническое значение времени в гликемических диапазонах и математических индексов ВГ как факторов, ассоциированных с Разработаны хроническими осложнениями СД. новые подходы прогнозированию НГ в режиме реального времени у больных СД 1 типа на основе параметров ВГ и алгоритмов МО.

Практическая значимость работы состоит в оптимизации подходов к оценке качества гликемического контроля у больных СД 1 типа на основе анализа ВГ. Разработана компьютерная программа для углубленного анализа данных НМГ (*CGMEX*, свидетельство о государственной регистрации RU 2021616872), позволяющая рассчитывать параметры времени в диапазонах в разное время суток, вычислять индексы ВГ, характеристики эпизодов гипо- и гипергликемии. Определены референсные значения дневных и ночных ВΓ c нормальной V ЛИЦ толерантностью Идентифицированы факторы, ассоциированные с достижением/недостижением целевых значений времени в целевом диапазоне и ВГ (по CV). Выделены факторы, ассоциированные с высокой ВГ у больных СД 1 типа. Показана значимость супрафизиологических доз инсулина как фактора риска высокой ВГ. Установлены преимущества режима ППИИ перед режимом МИИ по ВΓ. Идентифицированы характеристики влиянию параметры на гликемического контроля, которые в наибольшей степени ассоциированы с и НРГ. Разработан ДН. КАН метод прогнозирования НГ у больных СД 1 типа в режиме реального времени на основе параметров НМГ, клинических данных и алгоритмов МО. Для практического здравоохранения разработаны рекомендации по анализу данных НМГ с учетом оценки ВГ.

Положения, выносимые на защиту:

- 1. Параметры вариабельности уровня глюкозы у лиц с нормальной толерантностью к глюкозе выше в дневные часы, чем в ночные, и ассоциированы с массой тела, массой и распределением жировой ткани, секрецией инсулина.
- 2. На вариабельность уровня глюкозы и время в целевом диапазоне у больных сахарным диабетом 1 типа оказывают влияние: длительность сахарного диабета, наличие остаточной секреции инсулина, масса тела, функция почек, режим инсулинотерапии, дозы инсулина.

3. Алгоритмы машинного обучения (прежде всего Random Forest), оперирующие данными непрерывного мониторинга глюкозы и клиническими данными, обеспечивают высокоточное прогнозирование эпизодов ночной гипогликемии в режиме реального времени у больных сахарным диабетом 1 типа.

Степень достоверности. Обоснованность и достоверность результатов проведенного исследования определяется соответствием дизайна поставленным целям и задачам, достаточным объемом выборок, качественным и полным обследованием участников исследования, применением актуальных методов исследования и статистического анализа данных, включая технологии искусственного интеллекта.

Публикации результатов исследования. Основные результаты диссертационного исследования изложены в 21 печатной работе. По материалам диссертации опубликовано 4 статьи в рецензируемых журналах, рекомендованных Высшей аттестационной комиссией Российской Федерации, 12 публикаций в журналах, индексируемых в Scopus и/или Web of Science. Написана глава в монографии, изданы методические рекомендации по анализу вариабельности гликемии.

Апробация материалов диссертационной работы. Основные положения диссертации доложены и обсуждены на конференции по передовым технологиям и лечению диабета (Advanced Technologies & Treatments for Diabetes Conference, Барселона/онлайн, 27-30 апреля 2022), на 81-й научной сессии Американской диабетической ассоциации (онлайн, 25-29 июня 2021), на 57 конгрессе Европейской ассоциации по изучению сахарного диабета (онлайн, 28 сентября – 1 октября 2021), на XII международной мультиконференции «Биоинформатика регуляции геномов и структурная/системная биология» (BGRS/SB-2020, Новосибирск, 6-10 июля 2020), XXVIII Национальном диабетологическом конгрессе с международным участием «Сахарный диабет и ожирение - неинфекционные междисциплинарные пандемии XXI века» (Москва, 5-8 сентября 2022), на конференциях по диагностике и лечению сахарного диабета «Фундаментальная и клиническая диабетология в 21-м веке: от теории к практике» (Москва, 23–24 сентября 2021, почетная грамота за лучший постерный доклад; Москва, 7-8 сентября 2022), на IV и V Российской междисциплинарной научно-практической конференции с международным участием «Сахарный диабет: от мониторинга к управлению» (Новосибирск, конференции онлайн, 26-27 мая 2021, 19-20 апреля 2023), «Фундаментальные исследования в эндокринологии: Современная стратегия развития и технологии персонализированной медицины» (Новосибирск, 26-27 Урало-Сибирской конференции по вычислительным ноября 2020), на технологиям в когнитивных науках, геномике и биомедицине (Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), Новосибирск – Екатеринбург / онлайн, 4-8 июля 2022).

Апробация результатов диссертационного исследования состоялась на заседании научно-медицинского совета НИИКЭЛ – филиал ИЦиГ СО РАН 16.05.2023 г. (протокол №5 от 16.05.2023 г.).

Внедрение результатов исследования. Данные исследования внедрены в учебный процесс на кафедре терапии, гематологии и трансфузиологии ФПК и ППВ ФГБОУ ВО «Новосибирский государственный медицинский университет», на кафедре внутренних болезней Института медицины и психологии В. Зельмана ФГАОУ ВО «Новосибирский государственный национальный исследовательский университет». Материалы исследования включены в методические рекомендации для врачей «Анализ вариабельности гликемии» (ИПЦ НГУ, 2022). Полученные результаты используются в работе эндокринологического и консультативного отделений клиники НИИКЭЛ – филиал ИЦиГ СО РАН.

Объем и структура диссертации. Диссертация состоит из введения, обзора литературы, описания материалов и методов исследования, главы с результатами собственных исследований, обсуждения результатов, выводов и практических рекомендаций. Работа изложена на 155 страницах, содержит 49 таблиц, 12 рисунков. Список литературы содержит 250 источников, из них 34 – на русском языке.

Личный вклад автора. Автор участвовала в разработке дизайна, формулировке цели и задач работы. Автором самостоятельно проведен анализ литературных данных, отбор и клиническое обследование участников исследования, выполнены специальные инструментальные исследования (установка систем и анализ данных НМГ), статистическая обработка и анализ полученных данных. Разработка программы экспертного анализа данных НМГ и моделей прогноза гипогликемии проводилась совместно с д-ром техн. наук В.Б. Бериковым, Р.М. Козинец, канд. техн. наук О.А. Кутненко.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Дизайн исследования: Проведено одномоментное одноцентровое сравнительное исследование в условиях реальной клинической практики (рис. 1). Набор участников исследования проводился в клинике Научно-исследовательского института клинической и экспериментальной лимфологии – филиал ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук» (НИИКЭЛ – филиал ИЦиГ СО РАН).

Проведение исследования одобрено Этическим комитетом НИИКЭЛ – филиал ИЦиГ СО РАН (протокол №158 от 01.06.2020 г.). Все пациенты и участники с нормальной толерантностью к глюкозе предоставили письменное информированное добровольное согласие на участие в исследование.

Критерии включения в основную группу: 1. Мужчины и женщины с установленным диагнозом СД 1 типа в возрасте от 18 до 65 лет. 2. Проведение инсулинотерапии в режиме ПППИ или МИИ. 3. Наличие письменного информированного согласия на участие в исследовании.

Критерии включения для лиц с нормальной толерантностью к глюкозе:

1. Мужчины и женщины в возрасте от 18 до 65 лет. 2. Нормальная толерантность к глюкозе по данным орального глюкозотолерантного теста (ОГТТ) и исследования уровня HbA1c. 3. Наличие письменного информированного согласия на участие в исследование.

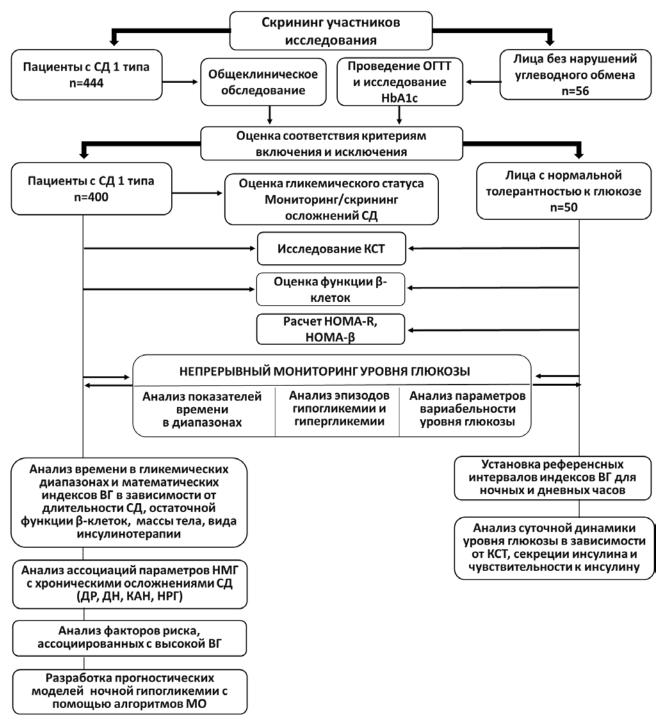


Рисунок 1 – Дизайн исследования

Критерии исключения (для основной группы и для группы лиц с нормальной толерантностью к глюкозе): 1. Другие специфические типы СД или СД 2 типа. 2. Беременность. 3. Сопутствующие заболевания или состояния,

оказывающие существенное влияние на уровень гликемии: интоксикации, тяжелые инфекции, заболевания печени с печеночной недостаточностью, злокачественные новообразования, синдромы мальабсорбции и др. 4. Лечение лекарственными средствами: цитостатики, глюкокортикоиды, иммуносупрессанты. Проведение антиретровирусной терапии в течение трех или более месяцев перед исследованием. 5. Наличие противопоказаний и ограничений к проведению НМГ.

Характеристика обследованных. Включено 400 пациентов с СД 1 типа, 144 мужчины и 256 женщин. Возраст составил 36 (27; 47) [Медиана (25; 75 перцентиль)] лет, длительность СД варьировала от одного года до 55 лет (медиана – 16 лет). Инсулинотерапию в режиме МИИ получали 289 пациентов, в режиме ППИИ – 111. Суточная доза инсулина (СДИ) составляла в среднем 40,0 (29,1; 54,0) ЕД, или 0,59 (0,47; 0,77) ЕД/кг. Уровень HbA1c составил 8,1 (7,1; 9,2)%, с разбросом значений от 4,7 до 15,1%.

В группу лиц с нормальной толерантностью к глюкозе вошли 50 человек, 20 мужчин и 30 женщин, в возрасте 39 (31; 44) лет.

Методы исследования. Состояние углеводного обмена оценивалось по уровню HbA1c (для основной группы и группы лиц с нормальной толерантностью к глюкозе), данным гликемического профиля в капиллярной крови натощак, через 2 часа после еды и в 3 ч ночи (для больных СД 1 типа), данным НМГ (для основной группы и группы лиц с нормальной толерантностью к глюкозе). Участникам исследования без СД проведен стандартный ОГТТ с 75 г глюкозы.

Функция бета-клеток поджелудочной железы у больных СД 1 типа оценивалась по результатам исследования базального и стимулированного (в тесте со смешанной пищей) уровней С-пептида в сыворотке крови. У участников с нормальной толерантностью к глюкозе проведено исследование функции бета-клеток по уровню инсулина и С-пептида в ходе ОГТТ, с расчетом индексов инсулинорезистентности и функции бета-клеток (HOMA-IR, HOMA-B) (Wallace TM. и соавт., 2004).

Определение HbA1c выполнено методом иммунотурбидиметрии (аппарат "Beckman-Coulter AU-480", Япония, с помощью тест-систем производителя). Для исследования уровня инсулина и С-пептида использовался метод хемилюминистцентного твердофазного анализа. Концентрация инсулина определялась на анализаторе Accu Bind® ELISA Test System (Monobind Inc.®, США), концентрация С-пептида – на иммунологическом анализаторе Immulite 2000 XPi (Siemens Healthineers, Германия).

Всем пациентам проведен скрининг/мониторинг осложнений (ДР, ДН, КАН). Наличие НРГ верифицировали по опроснику Clark (Clarke W.L. и соавт., 1995).

Анализ КСТ. Выполнялась двухэнергетическая рентгеновская абсорбциометрия на аппарате Lunar Prodigy (GE, США), с использованием программы "Body Composition". Оценивались: общая масса и процент ЖТ, масса и процент ЖТ на туловище, масса и процент ЖТ в центральной области

живота и на бедрах и их соотношение, «тощая» (безжировая или мышечная) масса, масса минерального компонента костей.

НМГ. Участникам основной группы НМГ выполнялся в режиме реального времени с помощью инсулиновых помп Medtronic Paradigm MMT 754 и ММТ 722 (Medtronic, США), программного обеспечения CareLink Pro[™] (Medtronic, США). Участникам с нормальной толерантностью к глюкозе был выполнен профессиональный НМГ с помощью систем для мониторирования Medtronic iPro2 и программного обеспечения CareLink iPro[™] (Medtronic, США). Продолжительность мониторинга составляла не менее 72 ч (в среднем 6,9 суток).

Анализ времени в целевом диапазоне. Рассчитано и проанализировано время в целевом диапазоне (Time In Range: TIR; 3,9-10 ммоль/л), время в диапазоне выше целевого (Time Above Range: TAR >10 ммоль/л; TAR L-1 10-13,9 ммоль/л; TAR L-2 >13,9 ммоль/л), время в диапазоне ниже целевого (Time Below Range: TBR; <3,9 ммоль/л; TBR L-1 3,0-3,9 ммоль/л; TBR L-2 <3,0 ммоль/л).

Анализ эпизодов гипергликемии и гипогликемии. Рассчитаны и проанализированы эпизоды гипогликемии с уровнем глюкозы <3,9 ммоль/л и <3,0 ммоль/л и гипергликемии с уровнем глюкозы >10 ммоль/л и >13,9 ммоль/л. Под эпизодом гипогликемии понималось время, проведенное в соответствующем значении гликемии продолжительностью от 15 мин и более. Для эпизодов гипогликемии и гипергликемии рассчитаны: количество эпизодов, площадь под кривой (AUC), общая продолжительность эпизода в данном диапазоне и максимальная продолжительность одного эпизода в анализируемом диапазоне.

Данные времени в диапазонах, эпизоды гипогликемии и гипергликемии рассчитаны с помощью программы экспертного анализа данных НМГ CGMEX (свидетельство о государственной регистрации программы для ЭВМ №2021616872 от 28.04.2021г.), в соответствии с рекомендациями международного консенсуса по анализу времени в диапазонах (Danne T. и соавт., 2017; Battelino T. и соавт., 2019). Все значения рассчитывали для дневных (6.00 - 23.59) и ночных (0.00 - 5.59) часов, суточных записей.

Анализ ВГ по данным математических индексов. Рассчитаны и проанализированы следующие показатели: средний уровень глюкозы, стандартное отклонение (Standard Deviation, SD), коэффициент вариабельности (Coefficient of Variation, CV), средняя амплитуда колебаний гликемии (Mean Amplitude of Glycemic Excursions, MAGE), 2-часовой индекс длительного повышения гликемии (Continuous Overlapping Net Glycemic Action, CONGA), индекс лабильности (Lability Index, LI), J-индекс, средняя скорость изменения уровня глюкозы (Mean Absolute Glucose rate of change, MAG), M-value, индекс риска гипергликемии (High Blood Glucose Index, HBGI), индекс риска гипогликемии (Low Blood Glucose Index, LBGI). Расчет параметров ВГ проводился для дневных (6.00 – 23.59) и ночных (0.00 – 5.59) часов с помощью

калькулятора EasyGV v. 9.0 (N. Hill и соавт., 2011), для суточных записей с помощью оригинального программного обеспечения *CGMEX*.

Построение моделей МО. Для генерации модели прогнозирования НГ у больных СД 1 типа использовали ночные записи НМГ (00:00 – 05:59). В модели включали математические индексы ВГ (CV, LI, LBGI, CONGA) и параметры временных рядов (минимальное значение, разница между двумя значениями, ускорение относительно последних коэффициент линейного тренда), рассчитанные по данным НМГ. получения баланса между записями НМГ с эпизодами и без эпизодов НГ, использовались методы балансировки: генерация искусственных объектов миноритарного класса и сокращение числа экземпляров мажоритарного класса. В дополнение к данным НМГ, в модели включали 23 клинических и лабораторных параметра как потенциальные предикторы НГ: возраст, пол, индекс массы тела (ИМТ), длительность диабета, хронические осложнения, характеристики сопутствующие заболевания, инсулинотерапии, гиполипидемической и гипотензивной терапии, HbA1c, показатели функции почек, альбуминурия. Применены алгоритмы: RF, LogRLasso и ANN для горизонта прогнозирования (ГП) 15 и 30 минут. Для оценки качества моделей рассчитывали AUC, чувствительность (Se) и специфичность (Sp).

Статистический анализ. Статистический анализ выполнен с помощью программ STATISTICA 10 (StatSoft Inc, 2011, США) и IBM SPSS Statistics 26.0 (ІВМ, США). С помощью критерия Колмогорова-Смирнова распределения проверены нормальность. Межгрупповые различия на количественному признаку оценивали с помощью критерия Манна-Уитни и ANOVA Краскела-Уоллиса. Взаимосвязь признаков изучали с помощью рангового корреляционного анализа Спирмена и многофакторного пошагового регрессионного анализа. Для выявления значений ассоциированных с высокой ВГ, проведен квартильный анализ и анализ ROCкривых. Референсные значения индексов ВГ у участников с нормальной толерантностью к глюкозе рассчитывались непараметрическим методом путем расчета 95% доверительный интервал (ДИ), согласно рекомендациям Института клинических и лабораторных стандартов (Clinical and Laboratory Standards Institute, 2010). При проверке статистических гипотез критический уровень значимости принимали равным 0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Референсные интервалы времени в гликемических диапазонах и вариабельности уровня глюкозы у лиц с нормальной толерантностью к глюкозе. Установленные в работе референсные значения параметров НМГ для суточных, дневных и ночных часов приведены в таблице 1.

В дневные часы значения индексов ВГ ожидаемо оказались выше по сравнению с ночными часами: SD (p<0,001), CV (p<0,001), MAGE (p<0,001), LI

(p<0,001), Ј-индекс (p<0,001), MAG (p<0,001), M-value (p=0,04), HBGI (p<0,001). Индекс LBGI был достоверно выше в ночное время (p=0,04).

Таблица 1 – Значения параметров ВГ по данным НМГ у лиц с нормальной толерантностью к глюкозе

Параметр	Суточные параметры	Параметры в дневные часы (6.00 – 23.59)	Параметры в ночные часы (00.00 – 05.59)	
Ср. уровень глюкозы, ммоль/л	5,8 (5,2-6,6)	5,8 (5,3-6,7)	5,5 (4,7-6,4)	
SD, ммоль/л	0,7 (0,5-1,3)	0,7 (0,5-1,4)	0,6 (0,3-0,9)	
CV, %	12,7 (9,1-23,2)	12,7 (8,7-24,5)	10,5 (5,3-17,9)	
MAGE, ммоль/л	1,8 (1,2-3,2)	1,8 (1,2-3,4)	1,5 (0,7-2,7)	
CONGA, ммоль/л	5,1 (4,3-5,9)	5,1 (4,3-5,9)	4,9 (4,1-5,8)	
MAG, ммоль/л/ч	0,8 (0,5-2,1)	0,9 (0,6-2,5)	0,7 (0,3-1,8)	
LI, (ммоль/л) ² /час	0,3 (0,1-1,3)	0,4 (0,2-1,6)	0,2 (0,1-0,8)	
J-индекс, (ммоль/л) ²	13,7 (11,3-18,6)	14,1 (11,2-19,6)	11,6 (8,5-17,5)	
M-value	1,0 (0,4-4,4)	0,9 (0,2-3,8)	1,3 (0,2-5,2)	
HBGI	0,4 (0,1-1,9)	0,5 (0,1-1,9)	0,2 (0,0-0,9)	
LBGI	0,9 (0,3-3,2)	0,9 (0,3-3,0)	1,4 (0,3-3,6)	

Примечание – Данные представлены как медианы и границы 95% ДИ.

Ассоциации параметров НМГ с КСТ, секрецией инсулина и чувствительностью к инсулину у лиц с нормальной толерантностью к глюкозе. Пациенты с нормальной толерантностью к глюкозе и избыточной массой тела, по сравнению с обследованными с нормальной массой тела, показали более высокий средний уровень глюкозы (p=0,01), более высокие значения индекса CONGA (p=0,02), Ј-индекса (p=0,04) и более низкие значения TBR (p=0,04), M-value (p=0,04), LBGI (p=0,03).

Положительная корреляция выявлена между ИМТ и среднесуточным уровнем глюкозы, CONGA и J-индексом. В то же время, ИМТ отрицательно коррелировал с временем в диапазоне ниже целевого, индексом риска гипогликемии и M-value (рис. 1). Индексы НОМА-IR и НОМА-β продемонстрировали положительные корреляции с общей массой ЖТ, массой ЖТ на туловище и массой ЖТ в центральной области живота (android fat) (рис. 2).

В многофакторном регрессионном анализе общая масса ЖТ явилась отрицательным предиктором значения МАG (p=0,02). Масса ЖТ в центральной области живота явилась положительным предиктором среднесуточного уровня глюкозы (p=0,003), SD (p=0,01), CONGA (p=0,001), J-индекса (p=0,005) и МАGE (p=0,049). Масса ЖТ на туловище была отрицательно ассоциирована с

SD (p=0,01), CV (p=0,01), J-индексом (p=0,005) и M-value (p=0,008). Уровень инсулина натощак показал положительную ассоциацию со среднесуточным уровнем глюкозы (p=0,003), TAR (p<0,001), SD (p=0,01), CV (p=0,01), MAGE (p=0,049), MAG (p=0,02), LI (p=0,01) и HBGI (p=0,007). Индекс НОМА- β был обратно ассоциирован со среднесуточным уровнем глюкозы (p=0,003), SD (p=0,01) и CONGA (p=0,001) и положительно – с M-value (p=0,008) и LBGI (p=0,003). Уровень инсулина на 120-й минуте ОГГТ и индекс НОМА-IR не показали достоверных ассоциаций с параметрами НМГ.

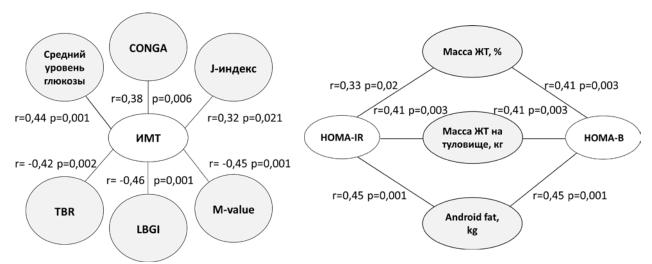


Рисунок 1 – Корреляции между ИМТ и параметрами НМГ у лиц с нормальной толерантностью к глюкозе

Рисунок 2 – Корреляции между параметрами КСТ, индексами HOMA-IR и HOMA-β у лиц с нормальной толерантностью к глюкозе

Таким образом, у лиц молодого и среднего возраста с нормальной толерантностью к глюкозе без ожирения суточные параметры НМГ связаны с массой тела, массой ЖТ и ее распределением. Избыточная масса тела у лиц с нормальной толерантностью к глюкозе ассоциирована с повышением секреции инсулина, снижением чувствительности к инсулину, повышение среднесуточного уровня глюкозы, но не амплитудо-зависимых параметров ВГ.

Анализ времени в гликемических диапазонах и ВГ у больных СД 1 типа. У 217 пациентов показатель ТІК был >70%, 183 пациента имели значения показателя ТІК \leq 70%. Больные с ТІК \leq 70%, в сравнении с группой пациентов с достигнутым ТІК >70%, получали большую СДИ (p<0,001) и имели более высокий уровень HbA1c (8,6 (7,7; 10,0) и 7,6 (6,8; 8,8)% соответственно, p<0,001). Пациенты с ТІК \leq 70% имели достоверно более высокие суточные, дневные и ночные значения CV, SD, MAGE, MAG, LI, CONGA, J-индекса, M-value, HBGI по сравнению с больными, достигшими целевых значений ТІК (все p<0,001). У 334 пациентов значения CV были \leq 36%, у 66 – >36%. Больные с CV >36%, в сравнении с пациентами с CV \leq 36%, получали большие СДИ (p=0,03) и имели более низкий уровень C-пептида натощак (p=0,005).

Время в гликемических диапазонах и параметры $B\Gamma$ у больных CД 1 типа с различной длительностью CД. Пациенты с длительностью $CД \le 5$ лет, по

сравнению с пациентами с более длительным заболеванием, имели более высокие показатели ТІК (все p<0,001) и более низкие значения большинства параметров ВГ: CONGA, J-индекс, M-value, HBGI, CV, SD, MAGE (все p<0,05). Больные с длительностью СД >20 лет характеризовались более высокими значениями ТАК L-1 и L-2 в сравнении с пациентами с длительностью СД \leq 5 лет (p=0,003 и p=0,017 соответственно) и более низкими значениями ТВК L-1 и L-2 по сравнению с больными с длительностью СД 5-20 лет (p=0,002 и p=0,007). Пациенты с длительностью СД 5-20 лет, в сравнении с больными с большей длительностью заболевания имели более высокие показатели индекса LBGI (p<0,001).

Время в гликемических диапазонах и параметры НМГ у больных СД 1 типа с различной остаточной функцией бета-клеток. Больные с наличием остаточной секреции инсулина показали лучший контроль гликемии по среднесуточному уровню глюкозы (p=0,031) и по величине ТІК (p=0,017), ТАК L-2 (p=0,013) в сравнении с больными с отсутствием остаточной секреции инсулина. Пациенты с остаточной секрецией инсулина имели более низкие значения практически всех суточных параметров НМГ: CONGA (p=0,021), Јиндекс (p=0,008), M-value (p=0,014), HBGI (p=0,008), CV (p<0,001), SD (p<0,001), MAGE (p=0,002), MAG (p=0,027), LI (p=0,007), несмотря на меньшую СДИ (p=0,001).

Время в гликемических диапазонах и параметры $B\Gamma$ у больных CД I типа в зависимости от массы тела. Пациенты с избыточной массой тела и ожирением по сравнению с больными с нормальной массой тела имели более высокий среднесуточный уровень глюкозы (p=0,039), показатель TAR L-1 (p=0,009), меньше времени находились в диапазоне гипогликемии в течении суток (p=0,044), демонстрировали более высокие значения CONGA (p=0,007), Јиндекса (p=0,039), индекса HBGI (p=0,036) и более низкие значения MAG (p=0,019), LBGI (p=0,024).

Время в гликемических диапазонах и ВГ у больных СД 1 типа: взаимосвязь с хроническими осложнениями. Пациенты с наличием ДР, по сравнению с больными без данного осложнения, имели более высокие значения среднесуточного уровня глюкозы (p=0,017), показателя ТАК L-1 (p=0,007) и более низкие показатели ТВК L-1 и L-2 (p=0,013 и p=0,007). У больных с ДР суточные значения CONGA (p=0,011), Ј-индекса (p=0,016), НВGI (p=0,043) были достоверно выше, а индекс LBGI (p=0,003) был ниже, в сравнении с группой больных без ДР.

Пациенты с ДН имели более высокие значения среднесуточного уровня глюкозы (p=0,044) и более низкие показатели ТВR L-1 и ТВR L-2 (p=0,003 и p=0,005) по сравнению с пациентами без ДН. У больных с ДН значения суточных параметров CONGA (p=0,012), Ј-индекса (p=0,034), SD (p=0,043) оказались более высокими, а индекс LBGI (p=0,003) был ниже, по сравнению с пациентами без ДН.

У больных с КАН определялись более высокие значения среднесуточного уровня глюкозы (p<0,001), показателей TAR L-1 (p<0,001) и TAR L-2 (p=0,001),

более низкие значения TIR (p=0,002), TBR L-1 и TBR L-2 (p=0,005 и p=0,002), в отличие от пациентов без данного осложнения. В группе с наличием КАН суточные параметры CONGA (p<0,001), Ј-индекс (p<0,001), М-value (p=0,009), HBGI (p=0,001) и SD (p=0,006) были достоверно выше, а индекс LBGI (p=0,003) ниже, в сравнении с группой больных без данного осложнения.

Пациенты с НРГ имели более высокие суточные значения уровня глюкозы (p=0,002), показателей ТАК L-1 и L-2 (p=0,002 и p=0,002) и более низкие значения ТІК (p=0,003) в сравнении с пациентами без НРГ. В группе с НРГ значения суточных параметров CONGA (p=0,001), Ј-индекса (p=0,003), М-value (p=0,011), НВGІ (p=0,002) и SD (p=0,009) были достоверно выше в сравнении с группой больных без НРГ. Значения МАGЕ (p=0,003) и LІ (p=0,003) в ночные часы были достоверно выше у пациентов с НРГ.

Время в гликемических диапазонах и параметры ВГ у больных СД 1 типа на разных режимах инсулинотерапии. Пациенты, получавшие ППИИ, имели более низкие средние значения уровня глюкозы, показателей ТАК L-1 и L-2, более высокие значения ТІК, в сравнении с больными на инсулинотерапии в режиме МИИ (все p<0,001). В то же время, значение ТВК L-1 (p<0,001), но не ТВК L-2, было выше у пациентов, получавших ППИИ. Пациенты, получавшие ППИИ, имели более низкие показатели индексов ВГ, характеризующих дисперсию, гипергликемию и скорость изменения уровня глюкозы, и более высокие значения LBGI, в сравнении с пациентами, получавшими МИИ.

Таким образом, на показатели времени в гликемических диапазонах и ВГ у больных СД 1 типа оказывает влияние длительность СД, наличие остаточной функции бета-клеток, масса тела и особенности КСТ, доза инсулина, а также режим инсулинотерапии (ППИИ/МИИ).

Факторы, ассоциированные с высокой ВГ, у больных СД 1 типа. Проанализированы параметры, характеризующие дисперсию значений глюкозы (CV), амплитуду колебаний (MAGE) и скорость изменений уровня глюкозы (MAG). Высокой ВГ соответствовали значения в пределах верхнего квартиля: CV ночью >31,8%, днем >34,5%; MAGE ночью >5,33 ммоль/л, днем >6,22 ммоль/л; MAG ночью >2,08 ммоль/л/час, днем >2,88 ммоль/л/час.

Пациенты с высокими значениями CV, MAGE и MAG в ночные и дневные часы, по сравнению с больными с низкими значениями данных индексов, имели нецелевые значения TIR (все p<0,001). У больных с высокими значениями CV и MAGE в ночные и дневные часы достоверно ниже были уровни С-пептида натощак (p<0,001, p=0,006 и p=0,003, p=0,004 соответственно) по сравнению с больными с низкими значениями CV и MAGE.

С помощью ROC-анализа установлены «отрезные точки» для факторов, ассоциированных с высокой ВГ. Выявлены факторы, сопряженные с высокой ВГ в ночные часы: для CV – СДИ \geq 0,7 ЕД/кг (OR=1,64, p=0,03) и расчетная скорость клубочковой фильтрации (рСКФ) \geq 90,5 мл/мин×1,73 м² (OR=1,95, p=0,005); для MAGE – СДИ базального инсулина \geq 0,3 ЕД/кг (OR=1,95, p=0,005) и болюсного инсулина \geq 0,3 ЕД/кг (OR=1,98, p=0,004); для MAG – ИМТ \leq 23,2 кг/м² (OR=1,62, p=0,04), окружность талии (OT) \leq 80,5 см (OR=1,91, p=0,03),

СДИ \geq 0,7 ЕД/кг (OR=1,74, p=0,02), HbA1c \geq 8,3% (OR=2,04, p=0,002) и рСКФ \geq 89,5 мл/мин×1,73 м² (OR=1,67, p=0,03). Факторами, ассоциированными с высокой ВГ в дневные часы, оказались: для CV - СДИ \geq 0,7 ЕД/кг (OR=1,69, p=0,03), СДИ базального \geq 0,3 ЕД/кг (OR=1,80, p=0,01); для МАGЕ - СДИ базального инсулина \geq 0,3 ЕД/кг (OR=1,60, p=0,045) и HbA1c \geq 8,2% (OR=2,16, p=0,001); для МАG - ИМТ \leq 23,2 кг/м² (OR=1,91, p=0,006), ОТ \leq 80,5 см (OR=2,04, p=0,02), СДИ \geq 0,7 ЕД/кг (OR=2,30, p=0,001), СДИ базального инсулина \geq 0,3 ЕД/кг (OR=1,72, p=0,02), СДИ болюсного инсулина \geq 0,3 ЕД/кг (OR=1,63, p=0,04) и HbA1c \geq 8,3% (OR=2,48, p<0,001).

Таким образом, высокая ВГ, оцененная по индексам CV, MAGE и MAG, у больных СД 1 типа ассоциирована с нецелевыми значениями гликемического контроля (по HbA1c и TIR), применением более высоких доз инсулина, отсутствием остаточной секреции эндогенного инсулина, нормальной или низкой массой тела, сохранной функцией почек.

Методы МО в прогнозировании эпизодов НГ у больных СД 1 типа. Эпизоды гипогликемии с уровнем глюкозы менее 3,9 ммоль/л в ночное время зарегистрированы у 165 больных, средняя продолжительность эпизода составляла 37,5 минут. Для прогнозирования данных эпизодов были обучены три алгоритма МО: RF, состоящий из 500 деревьев, LogRLasso и ANN, с использованием различных типов балансировки, и без них. Проведено сравнение моделей, основанных только на показателях НМГ, с моделями, которые включали комбинации показателей НМГ и клинических данных.

Эффект типа балансировки оказался неочевидным и зависел от типа модели МО и ГП. Однофакторный дисперсионный анализ показал, что влияние типа балансировки на значения АUС статистически незначимо (p=0,8 для всех моделей). Применение подхода без балансировки обеспечило самые высокие значения АUС в модели RF, обученной на показателях НМГ и клинических данных (AUC: 0,97 в модели без балансировки и 15-минутным ГП; 0,942 в модели без балансировки и 30-минутным ГП). В моделях с применением алгоритма LogRlasso с включением данных НМГ и клинических параметров достигнуты следующие значения AUC: 0,958 в модели без балансировки и 15-минутным ГП; 0,933 в модели без балансировки и 30-минутным ГП ANN показала несколько худшие результаты в моделях, обученных только на НМГ и на НМГ с клиническими данными (табл. 2).

С помощью алгоритма RF идентифицированы предикторы HГ в моделях с ГП 15 и 30 минут. Среди параметров НМГ наиболее надежными предикторами оказались: минимальный уровень глюкозы, LBGI, разница между двумя последними значениями, CONGA, коэффициент линейного тренда. Из клинико-лабораторных параметров наиболее значимыми предикторами являлись: минимальный уровень глюкозы, индекс LBGI, длительность СД, НbA1c, СДИ (базального) и протеинурия.

Таким образом, алгоритмы MO (LogRLasso, RF), оперирующие параметрами динамики временных рядов и параметрами ВГ, позволяют прогнозировать развитие эпизодов НГ у больных СД 1 типа с клинически приемлемой точностью при 15-минутном и 30-минутном ГП.

Таблица 2 – Характеристики моделей машинного обучения для прогнозирования ночной гипогликемии

	Балансиров		RF		LogRLasso		ANN	
ГП	ка/ метрики качества		НМГ	НМГ + клинические данные	НМГ	НМГ + клинические данные	НМГ	НМГ+ клинические данные
15 минут	os	Se	93,6 (3,4)	90,9 (2,8)	93,6 (1,9)	93,0 (3,0)	90,5 (5,9)	90,8 (2,5)
		Sp	90,1 (2,4)	91,8 (2,3)	91,9 (2,2)	93,0 (2,0)	91,4 (1,6)	89,1 (4,5)
		AUC	0,958 (0,011)	0,953 (0,012)	0,962 (0,010)	0,968 (0,014)	0,946 (0,032)	0,935 (0,029)
	NS	Se	91,8 (1,2)	94,5 (2,6)	93,6 (3,4)	92,4 (2,5)	88,6 (3,6)	90,3 (3,1)
		Sp	91,1 (3,9)	91,4 (3,3)	91,2 (2,5)	92,3 (3,7)	92,6 (3,1)	91,0 (1,6)
		AUC	0,959 (0,020)	0,97 (0,017)	0,957 (0,021)	0,958 (0,025)	0,934 (0,032)	0,935 (0,027)
	US	Se	88,2 (5,2)	92,3 (3,4)	90,5 (6,7)	90,8 (4,7)	90,0 (4,7)	91,9 (3,7)
		Sp	92,7 (2,1)	90,6 (1,3)	91,4 (1,4)	91,2 (2,4)	90,2 (2,8)	88,9 (3,6)
		AUC	0,953 (0,023)	0,956 (0,009)	0,947 (0,036)	0,947 (0,018)	0,947 (0,033)	0,945 (0,017)
30 минут	os	Se	87,6 (1,9)	86,6 (3,6)	90,4 (1,7)	91,0 (3,5)	87,6 (3,9)	84,6 (5,2)
		Sp	88,9 (3,1)	87,0 (2,6)	87,5 (2,2)	87,7 (3,7)	88,0 (4,0)	87,2 (5,5)
		AUC	0,927 (0,03)	0,911 (0,019)	0,932 (0,06)	0,94 (0,012)	0,918 (0,031)	0,881 (0,034)
	NS	Se	87,1 (4,6)	90,4 (4,7)	87,1 (4,0)	86,9 (4,0)	86,6 (3,2)	83,3 (4,2)
		Sp	87,1 (6,0)	87,4 (1,6)	90,8 (1,9)	90,3 (1,9)	88,7 (2,2)	86,3 (2,8)
		AUC	0,92 (0,036)	0,942 (0,028)	0,928 (0,012)	0,933 (0,012)	0,924 (0,018)	0,881 (0,049)
	US	Se	89,5 (3,6)	92,4 (3,1)	85,1 (5,6)	90,3 (3,2)	85,1 (5,3)	85,2 (3,6)
		Sp	86,5 (2,8)	85,3 (1,2)	89,5 (1,8)	86,7 (1,9)	87,5 (2,7)	84,8 (2,2)
		AUC	0,912 (0,031)	0,923 (0,021)	0,913 (0,027)	0,92 (0,03)	0,908 (0,028)	0,901 (0,023)

Примечание — Указаны усредненные в процессе кросс-валидации метрики качества моделей (в процентах), для двух разных значений горизонта прогнозирования (ГП), без учета и с учетом клинических характеристик. В скобках указаны значения среднеквадратического отклонения оценок. Наибольшие значения площади под кривой (AUC), полученные каждым методом (отдельно по данным, учитывающим и не учитывающим клинические признаки) выделены жирным шрифтом. Se — чувствительность, Sp — специфичность, OS — генерация искусственных объектов миноритарного класса (oversampling), NS — базовая процедура без использования балансировки (по sampling), US — сокращение числа экземпляров мажоритарного класса (undersampling).

ЗАКЛЮЧЕНИЕ

Полученные в исследовании данные свидетельствуют, что параметры ВГ являются чувствительными индикаторами гомеостаза глюкозы как у здоровых лиц, так и у больных СД 1 типа.

У лиц с нормальной толерантностью к глюкозе параметры ВГ ассоциированы с массой тела, с массой и распределением жировой ткани, секрецией инсулина. На параметры ВГ у больных СД 1 типа оказывают влияние длительность заболевания и остаточная функция бета-клеток, режим инсулинотерапии (МИИ/ППИИ), дозы инсулина, масса тела, функция почек. Высокая ВГ (индексы CV, MAGE, MAG) у больных СД 1 типа ассоциирована с худшим качеством контроля гликемии (при оценке по уровню HbA1c и TIR), отсутствием остаточной секреции эндогенного инсулина, супрафизиологических доз инсулина, нормальной или низкой массой тела, сохранной функцией почек. Параметры ВГ, чувствительные к гипергликемии (CONGA, J-индекс, M-value, HBGI), ассоциированы с длительностью СД 1 типа, отсутствием остаточной секреции инсулина, наличием избыточной массы тела/ожирения, микрососудистых осложнений, ДАН и НРГ. Инсулинотерапия в режиме ППИИ, по сравнению с МИИ, позволяет достичь лучших времязависимых и амплитудо-зависимых параметров ВГ без повышения риска клинически значимой гипогликемии.

Модели МО (алгоритмы RF, LogRLasso и ANN), оперирующие индексами ВГ и параметрами временных рядов, рассчитанными по данным НМГ, обеспечивают высокую точность краткосрочного (15-30 минут) прогноза эпизодов ночной гипогликемии у больных СД 1 типа.

Таким образом, анализ $B\Gamma$ можно считать ценным инструментом для оценки качества гликемического контроля и прогнозирования гликемии у пациентов с СД 1 типа.

ВЫВОДЫ

- 1. У лиц молодого и среднего возраста с нормальной толерантностью к глюкозе референсными значениями параметров НМГ для суточных записей являются: средний уровень глюкозы 5,2-6,6 ммоль/л, SD 0,5-1,3 ммоль/л, CV 9,1-23,2%, MAGE 1,2-3,2 ммоль/л, CONGA 4,3-5,9 ммоль/л, MAG 0,5-2,1 ммоль/л/ч, LI 0,1-1,3 (ммоль/л)²/ч, Ј-индекс 11,3-18,6 (ммоль/л)², M-value 0,4-4,4, HBGI 0,1-1,9, LBGI 0,3-3,2; для дневных часов (6.00-23.59): средний уровень глюкозы 5,3-6,7 ммоль/л, SD 0,5-1,4 ммоль/л, CV 8,7-24,5%, MAGE 1,2-3,4 ммоль/л, CONGA 4,3-5,9 ммоль/л, MAG 0,6-2,5 ммоль/л/ч, LI 0,2-1,6 (ммоль/л)²/ч, Ј-индекс 11,2-19,6 (ммоль/л)², M-value 0,2-3,8, HBGI 0,1-1,9, LBGI 0,3-3,0; для ночных часов: средний уровень глюкозы 4,7-6,4 ммоль/л, SD 0,3-0,9 ммоль/л, CV 5,3-17,9%, MAGE 0,7-2,7 ммоль/л, CONGA 4,1-5,8 ммоль/л, MAG 0,3-1,8 ммоль/л/ч, LI 0,1-0,8 (ммоль/л)²/ч, Ј-индекс 8,5-17,5 (ммоль/л)², M-value 0,2-5,2, HBGI 0,0-0,9, LBGI 0,3-3,6.
- 2. На суточную динамику уровня глюкозы у лиц молодого и среднего возраста с нормальной толерантностью к глюкозе оказывают влияние особенности состава тела и секреции инсулина: в многофакторном

- регрессионном анализе масса жировой ткани (ЖТ) обратно ассоциирована со скоростью изменений уровня глюкозы (индексом MAG); масса ЖТ в центральной области живота прямо ассоциирована со среднесуточным уровнем глюкозы, параметрами, чувствительными к гипергликемии (CONGA, J-индекс), дисперсией значений глюкозы (SD) и амплитудой колебаний (MAGE); индекс функции бета-клеток HOMA-В обратно ассоциирован со среднесуточным уровнем глюкозы, SD, CONGA и прямо ассоциирован с M-value и LBGI.
- 3. Больные СД 1 типа, не достигшие целевых значений TIR, по сравнению с больными с TIR >70%, имеют достоверно (p<0,001) более высокие значения параметров, характеризующих дисперсию значений глюкозы (SD, CV), амплитуду колебаний (MAGE), скорость изменения уровня глюкозы (MAG, LI), а также параметров, чувствительных к гипергликемии (CONGA, J-индекс, M-value, HBGI), на фоне приема более высоких суточных доз инсулина (p<0,001).
- У больных СД 1 типа увеличение параметров ВГ, чувствительных к гипергликемии (CONGA, Ј-индекс, M-value, HBGI), ассоциировано длительностью заболевания >5 лет, отсутствием остаточной секреции $K\Gamma/M^2$. инсулина, >25 наличием микрососудистых осложнений (диабетической ретинопатии, нефропатии, кардиоваскулярной автономной нарушенного распознавания гипогликемии; нейропатии), параметры, отражающие дисперсию (SD), амплитуду колебаний (MAGE), скорость изменения уровня глюкозы (LI) выше у пациентов с длительностью СД >5 лет, уровнем С-пептида, нарушенным неопределяемым распознаванием гипогликемии.
- 5. Больные СД 1 типа, находящиеся на ППИИ, по сравнению с больными, получающими инсулин в режиме МИИ, имеют более высокие значения времени в целевом диапазоне (TIR: p<0,001) и в диапазоне 3-3,9 ммоль/л (TBR L-1: p<0,001), большие значения LBGI (p=0,021), а также меньшие значения CONGA (p<0,001), J-индекса (p<0,001), M-value (p<0,001), HBGI (p<0,001), SD (p<0,001), MAGE (p<0,001), MAG (p=0,007) и LI (p<0,001).
- У больных СД 1 типа факторами риска высокой ВГ в ночные часы являются: для CV — суточная доза инсулина ≥ 0.7 ЕД/кг (OR=1,64, p=0,03) и $pCK\Phi \ge 90.5 \text{ мл/мин} \times 1.73 \text{ м}^2 \text{ (OR=1.95, p=0.005)};$ для MAGE – суточная доза базального инсулина ≥ 0.3 ЕД/кг (OR=1.95, p=0.005), доза болюсного инсулина ≥ 0.3 ЕД/кг (OR=1.98, p=0.004); для MAG – ИМТ ≤ 23.2 кг/м² (OR=1.62, p=0.04), OT ≤80,5 см (OR=1,91, p=0,03), суточная доза инсулина \ge 0,7 ЕД/кг (OR=1,74, p=0.02), HbA1c $\geq 8.3\%$ (OR=2.04, p=0.002), pCK $\Phi \geq 89.5$ мл/мин×1.73 м2 (OR=1,67, p=0,03). Факторы риска высокой ВГ в дневные часы: для CV – ≥0,7 ЕД/кг (OR=1,69, p=0,03), суточная доза суточная доза инсулина базального инсулина ≥ 0.3 ЕД/кг (OR=1.80, p=0.01); для MAGE – HbA1c $\ge 8.2\%$ (OR=2,16, p=0,001), суточная доза базального инсулина $\geq 0,3$ ЕД/кг (OR=1,60,p=0.045); для MAG – ИМТ ≤ 23.2 кг/м² (OR=1.91, p=0.006), OT ≤ 80.5 см (OR=2,04, p=0,02), суточная доза инсулина ≥ 0.7 ЕД/кг (OR=2,30, p=0,001), суточная доза болюсного и базального инсулина ≥ 0.3 (OR=1,63, p=0,04) и ≥ 0.3 ЕД/кг (OR=1,72, p=0,02) соответственно, HbA1c \geq 8,3% (OR=2,48, p<0,001).

7. В моделях МО, обученных на данных НМГ и клинических данных, обеспечивает наибольшую точность прогноза сравнению алгоритмами LogRLasso **ANN** гипогликемии ПО c (чувствительность и специфичность до 94,5% и 91,4% при 15-минутном ГП и до 90,4 и 87,4 при 30-минутном ГП соответственно), при этом наибольшую прогностическую ценность имеют параметры, характеризующие концентрацию и динамику уровня глюкозы перед эпизодом гипогликемии (минимальный уровень глюкозы, LBGI, разница между двумя последними значениями, CONGA, коэффициент линейного тренда); включение клинических данных в модели повышает чувствительность и специфичность прогноза до 2% при 30-минутном $\Gamma\Pi$.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Рекомендуется использовать установленные референсные значения параметров НМГ в течение суток, в дневные и ночные часы, в научных исследованиях и в клинической практике для оценки результатов НМГ у лиц молодого и среднего возраста с нормальной толерантностью к глюкозе.
- 2. Рекомендуется использовать программу экспертного анализа данных НМГ СGMEX для расчета параметров времени в гликемических диапазонах в дневные и ночные часы, параметров $B\Gamma$, характеристик эпизодов гипогликемии и гипергликемии у больных СД 1 типа.
- 3. При анализе ВГ у больных СД 1 типа рекомендуется оценивать дисперсию значений глюкозы (индекс CV), амплитуду колебаний (индекс MAGE), скорость изменения концентрации глюкозы (индекс MAG) в дневные (06.00-23.59) и ночные (0.00-5.59) часы.
- 4. В лечении больных СД 1 типа необходимо избегать применения супрафизиологических доз инсулина, ассоциированных с высокой ВГ.
- 5. У больных СД 1 типа ППИИ имеет преимущества по сравнению с режимом МИИ по влиянию на время в целевом диапазоне и параметры ВГ.
- 6. Прогностические модели, основанные на параметрах НМГ, клинических данных и алгоритмах МО (прежде всего RF), могут использоваться для прогнозирования эпизодов ночной гипогликемии в режиме реального времени у больных СД 1 типа.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Семенова, Ю.Ф.** Референсные значения суточных, дневных и ночных показателей вариабельности гликемии у лиц с нормальной толерантностью к глюкозе / **Ю.Ф. Семенова**, В.В. Климонтов // **Сахарный диабет.** − 2022. − Т. 25, № 2. − С. 104-111. − doi: 10.14341/DM12793. (Web of Science, Scopus, RSCI)
- 2. Klimontov, V.V. Glucose variability in subjects with normal glucose tolerance: Relations with body composition, insulin secretion and sensitivity / V.V. Klimontov, **J.F. Semenova** // **Diabetes & Metabolic Syndrome: Clinical Research & Reviews.** 2022. Vol. 16, N. 1. Article 102387. doi: 10.1016/j.dsx.2022.102387. (Web of Science, Scopus, Pubmed)
- 3. Климонтов, В.В. Факторы, ассоциированные с высокой вариабельностью гликемии у больных сахарным диабетом 1 типа / В.В. Климонтов, **Ю.Ф.**

- **Семенова,** А.И. Корбут // **Сахарный диабет.** 2022. Т. 25, № 4. С. 347-357. doi: 10.14341/DM12888. (Web of Science, Scopus, RSCI)
- 4. Berikov, V.B. Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes / V.B. Berikov, O.A. Kutnenko, **J.F. Semenova**, V.V. Klimontov // **Journal of Personalized Medicine.** 2022. Vol. 12, N. 8. Article 1262. doi: 10.3390/jpm12081262. (Web of Science, Scopus, Pubmed, Pubmed Central)
- 5. **Semenova, J.F.** Time in ranges and glucose variability in patients with type 1 diabetes on continuous subcutaneous insulin infusion and multiple daily injections / J.F. Semenova, V.V. Klimontov // 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). Novosibirsk, Russian Federation, July, 7-8, 2022. Publisher: IEEE. P. 70-72. doi: 10.1109/CSGB56354.2022.9865529. (Scopus)
- 6. Klimontov, V.V. Glucose variability in subjects with type 1 diabetes: The relationships with non-enzymatic glycation, albuminuria and renal function / V.V. Klimontov, **J.F. Semenova**, A.K. Vigel // 2020 Cognitive Sciences, Genomics and Bioinformatics, CSGB 2020: Conference Proceedings, Novosibirsk, Russian Federation, 6-10 July 2020. Publisher: IEEE. Article 9214670. P. 131-134. doi: 10.1109/CSGB51356.2020.9214670. (Scopus)
- 7. Klimontov, V.V. 135-OR: Impaired Awareness of Hypoglycemia Is Associated with Residual Beta-Cell Function and Glucose Variability Parameters in Patients with Type 1 Diabetes / V.V. Klimontov, **J.F. Semenova**, A.I. Korbut // Diabetes. 2021. Vol. 70, Suppl. 1. P.135-OR. doi: 10.2337/db21-135-OR. (Web of Science)
- 8. Berikov, V. 340-P: Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes Using Combined Supervised and Unsupervised Ensemble Learning / V. Berikov, **Ju. F. Semenova**, V. Klimontov // Diabetes. 2021. Vol. 70, No S1. P. 340-P. doi 10.2337/db21-340-P. (Web of Science)
- 9. Berikov, V.B. Machine learning approaches for prediction of nocturnal hypoglycaemia in patients with type 1 diabetes in a hospital setting / V.B. Berikov, R.M. Kozinetz, **J.F. Semenova**, V.V. Klimontov // Diabetologia. 2021. Vol. 64, Suppl. 1. P. 84-85. doi: 10.1007/s00125-021-05519-y. (Web of Science)
- 10. Klimontov, V.V. Continuous glucose monitoring parameters are related to serum levels of non-enzymatic glycation products in patients with type 1 diabetes / V.V. Klimontov, M.V. Dashkin, **J.F. Semenova** // Diabetologia. 2021. Vol. 64, No S1. P. 330. doi: 10.1007/s00125-021-05519-y. (Web of Science)
- 11. Klimontov, V. Factors affecting glucose variability in patients with type 1 diabetes in the hospital setting / V. Klimontov, **J. Semenova**, A.Korbut // Diabetes Technology and Therapeutics. 2022. Vol. 24, Suppl. 1. P. A-198–A-199. doi: 10.1089/dia.2022.2525.abstracts. (Web of Science)
- 12. Klimontov, V. Nocturnal glucose fluctuations in patients with type 1 diabetes: which patterns are associated with hypoglycemia? / V. Klimontov, D. Kladov, V. Berikov, **J. Semenova** // Diabetes Technology and Therapeutics. 2022. Vol. 24, Suppl. 1. P. A-164. doi: 10.1089/dia.2022.2525.abstracts. (Web of Science)
- 13. Цифровая диабетология. Монография / В.В. Климонтов, В.Б. Бериков, О.В. Сайк, А.И. Корбут, **Ю.Ф. Семенова**, Д.Е. Кладов / Под ред. проф. РАН В.В. Климонтова. Новосибирск: ИПЦ НГУ, 2022. 260 с.

- 14. Климонтов, В.В. Анализ вариабельности гликемии. Методические рекомендации. / Климонтов В.В., **Семенова Ю.Ф.** Новосибирск: ИПЦ НГУ, 2022.
- 15. Климонтов, В.В. Клинические и метаболические факторы, ассоциированные с остаточной секрецией инсулина, у больных сахарным диабетом 1 типа / Климонтов В.В., Семенова Ю.Ф. // Фундаментальная и клиническая диабетология в 21 веке: от теории к практике: Сборник тезисов конференции по лечению и диагностике сахарного диабета. Москва, 23-24 сентября 2021. С. 52. doi: 10.14341/Conf23-24.09.21-52.
- 16. **Семенова, Ю.Ф.** Анализ данных непрерывного мониторинга уровня глюкозы у больных сахарным диабетом 1 типа в реальной клинической практике с помощью оригинального программного обеспечения / Ю.Ф. Семенова, В.В. Климонтов // Фундаментальная и клиническая диабетология в 21 веке: от теории к практике: Сборник тезисов конференции по лечению и диагностике сахарного диабета. Москва, 23-24 сентября 2021. С. 89. doi: 10.14341/Conf23-24.09.21-89.
- 17. Бериков, В.Б. Прогнозирование ночной гипогликемии у пациентов с сахарным диабетом 1 типа: возможности машинного обучения / В.Б. Бериков, В.М. Неделько, **Ю.Ф. Семенова**, В.В. Климонтов // Сборник тезисов IV (XXVII) Национального конгресса эндокринологов «Инновационные технологии в эндокринологии». Москва, 22–25 сентября 2021 г. С. 127. doi: 10.14341/Conf22-25.09.21-127.
- 18. Бериков, В.Б. Использование машинного обучения для прогнозирования ночной гипогликемии у пациентов с сахарным диабетом 1 типа / В.Б. Бериков, Р.М. Козинец, **Ю.Ф. Семенова**, В.В. Климонтов // Сахарный диабет-2021: от мониторинга к управлению: Материалы IV Российской мультидисциплинарной конференции с международным участием. Новосибирск, 26-27 мая 2021. С. 23-26.
- 19. **Семенова, Ю.Ф.** Время в гликемических диапазонах и вариабельность уровня глюкозы у больных сахарным диабетом 1 типа: ассоциации с микрососудистыми осложнениями / Ю.Ф. Семенова, В. В. Климонтов // Фундаментальная и клиническая диабетология в 21 веке: от теории к практике: Сборник тезисов конференции по лечению и диагностике сахарного диабета. Москва, 7-8 сентября 2022. С. 107. doi: 10.14341/Conf7-8.09.22-107.
- 20. **Семенова, Ю.Ф.** Особенности суточной динамики уровня глюкозы у больных сахарным диабетом 1 типа с избыточной массой тела и ожирением / Ю.Ф. Семенова, В.В. Климонтов // V Российская междисциплинарная научнопрактическая конференция с международным участием «Сахарный диабет: от мониторинга к управлению». Новосибирск 19-20 апреля 2023 г. С. 136-141.
- 21. Программа экспертного анализа данных непрерывного мониторинга уровня глюкозы (CGMEX). / Козинец, Р.М., Климонтов В.В., Бериков В.Б., Семенова Ю.Ф. Свидетельство о государственной регистрации программы для ЭВМ RU 2021616872. Дата регистрации: 16.04.2021.

СПИСОК СОКРАЩЕНИЙ

ВГ – вариабельность уровня глюкозы

ГП – горизонт прогнозирования ДИ – доверительный интервал ДН – диабетическая нефропатия ДР – диабетическая ретинопатия

ЖТ – жировая ткань ИМТ – индекс массы тела

КАН – кардиоваскулярная автономная нейропатия

КСТ – композитный состав тела

МИИ – множественные инъекции инсулина

MO – машинное обучениеHΓ – ночная гипогликемия

НМГ – непрерывный мониторинг уровня глюкозыНРГ – нарушенное распознавание гипогликемии

ОГТТ – оральный глюкозотолерантный тест

ОТ - окружность талии

ППИИ – постоянная подкожная инфузия инсулина рСКФ – расчетная скорость клубочковой фильтрации

СД – сахарный диабет

СДИ – суточная доза инсулина

ANN – Artificial Neural Networks (искусственная нейронная сеть)

AUC – under the curve (площадь под кривой)

CONGA – continuous overlapping net glycemic action (индекс длительного

повышения гликемии)

CV – Coefficient of Variation (коэффициент вариации)

HbA1c
 glycated hemoglobin A1c (гликированный гемоглобин A1c)
 HBGI
 High Blood Glucose Index (индекс риска гипергликемии)
 Low Blood Glucose Index (индекс риска гипогликемии)

Li – Lability Index (индекс лабильности)

LogRLasso – Logistic linear Regression with Lasso regularization (линейная

регрессия с регуляризацией Лассо)

MAG – Mean Absolute Glucose rate of change (скорость изменений

уровня глюкозы)

MAGE – Mean Amplitude of Glycemic Excursion (средняя амплитуда

колебаний гликемии)

OR – odds ratio (отношение шансов)

RF – Random Forest (алгоритм «случайный лес») SD – Standard Deviation (стандартное отклонение)

Se – Sensitivity (чувствительность)
Sp – Specificity (специфичность)

TAR — Time Above Range (время в диапазоне выше целевого)
TBR — Time Below Range (время в диапазоне ниже целевого)

TIR — Time in Range (время в целевом диапазоне)